Bioprecipitation as a Bioremediation Strategy for Environmental Cleanup 37
Government of Canada. 2017. Compare decontamination technologies—Guidance and Orientation for the Selection
of Technologies—Contaminated sites—Pollution and waste management—Environment and natural
resources—Canada.ca. https://gost.tpsgc-pwgsc.gc.ca/Techlst.aspx?lang=eng#wb-auto-5.
Hao, O. J., J. M. Chen, L. Huang and R. L. Buglass. 1996. Sulfate‐reducing bacteria. Crit. Rev. Environ. Sci. Technol.
26(2): 155–187. https://doi.org/10.1080/10643389609388489.
Hao, T., P. Xiang, H. R. Mackey, K. Chi, H. Lu, H. Chui, M. C. M. van Loosdrecht and G.-H. Chen. 2014. A review
of biological sulfate conversions in wastewater treatment. Water Res. 65: 1–21. https://doi.org/10.1016/j.
watres.2014.06.043.
Hengen, T. J., M. K. Squillace, A. D. O’Sullivan and J. J. Stone. 2014. Life cycle assessment analysis of active
and passive acid mine drainage treatment technologies. Resour. Conserv. Recycl. 86: 160–167. https://doi.
org/10.1016/j.resconrec.2014.01.003.
ICF Incorporated. 1995. An introduction to environmental accounting as a business management tool: key concepts
and terms (EPA 742-R-95-001). https://www.epa.gov/sites/default/files/2014-01/documents/busmgt.pdf.
ISO. 2006. ISO 14040:2006(en), environmental management—life cycle assessment—principles and framework.
International Organization for Standardization. https://www.iso.org/obp/ui/#iso:std:iso:14040:ed-2:v1:en.
Janssen, G. M. C. M. and E. J. M. Temminghoff. 2004. In situ metal precipitation in a zinc-contaminated, aerobic
sandy aquifer by means of biological sulfate reduction. Environ. Sci. Technol. 38(14): 4002–4011. https://doi.
org/10.1021/es030131a.
Johnson, D. B. and A. L. Santos. 2020. Biological removal of sulfurous compounds and metals from inorganic
wastewaters. pp. 215–246. In: P. Lens [ed.]. Environmental Technologies to Treat Sulfur Pollution: Principles
and Engineering (Second Edition). IWA Publishing.
Kaksonen, A. H. and J. A. Puhakka. 2007. Sulfate reduction based bioprocesses for the treatment of acid mine
drainage and the recovery of metals. Eng. Life Sci. 7(6): 541–564. https://doi.org/10.1002/elsc.200720216.
Karpiński, P. H. and J. Bałdyga. 2019. Chapter 8: precipitation processes. pp. 216–265. In: A. S. Myerson, D. Erdemir
and A. Y. Lee. [eds.]. Handbook of Industrial Crystallization (3rd Edition). Cambridge University Press. https://
www-cambridge-org.qe2a-proxy.mun.ca/core/books/handbook-of-industrial-crystallization/precipitation-pro
cesses/011386C77A45C4AAAFD4DE1B2FE0D609.
Kawaguchi, T. and A. W. Decho. 2002. A laboratory investigation of cyanobacterial extracellular polymeric secretions
(EPS) in influencing CaCO3 polymorphism. J. Cryst. Growth. 240(1): 230–235. https://doi.org/10.1016/
S0022-0248(02)00918-1.
Kiran, M. G., K. Pakshirajan and G. Das. 2017. An overview of sulfidogenic biological reactors for the simultaneous
treatment of sulfate and heavy metal rich wastewater. Chem. Eng. Sci. 158: 606–620. https://doi.org/10.1016/j.
ces.2016.11.002.
Kiskira, K., S. Papirio, E. D. van Hullebusch and G. Esposito. 2017. Fe(II)-mediated autotrophic denitrification:
a new bioprocess for iron bioprecipitation/biorecovery and simultaneous treatment of nitrate-containing
wastewaters. Int. Biodeterior. Biodegrad. 119: 631–648. https://doi.org/10.1016/j.ibiod.2016.09.020.
Kosolapov, D. B., P. Kuschk, M. B. Vainshtein, A. V. Vatsourina, A. Wießner, M. Kästner and R. A. Müller. 2004.
Microbial processes of heavy metal removal from carbon-deficient effluents in constructed wetlands. Eng.
Life Sci. 4(5): 403–411. https://doi.org/10.1002/elsc.200420048.
Kumar, N., R.-M. Couture, R. Millot, F. Battaglia-Brunet and J. Rose. 2016. Microbial sulfate reduction enhances
arsenic mobility downstream of zerovalent-iron-based permeable reactive barrier. Environ. Sci. Technol.
50(14): 7610–7617. https://doi.org/10.1021/acs.est.6b00128.
Kumar, R., M. Nongkhlaw, C. Acharya and S. R. Joshi. 2013. Bacterial community structure from the perspective
of the uranium ore deposits of domiasiat in India. Proceedings of the National Academy of Sciences, India
Section B: Biological Sciences. 83(4): 485–497. https://doi.org/10.1007/s40011-013-0164-z.
Kuppusamy, S., N. R. Maddela, M. Megharaj and K. Venkateswarlu. 2020. Total Petroleum Hydrocarbons:
Environmental Fate, Toxicity, and Remediation. Springer International Publishing. https://doi.org/10.1007/978
3-030-24035-6.
LaGrega, M. D., P. Buckingham and J. Evans. 1994. Hazardous Waste Management (Second Edition). Waveland
Press, Inc.
Levett, A., E. J. Gagen, Y. Zhao, P. M. Vasconcelos and G. Southam. 2020. Biocement stabilization of an experimental-
scale artificial slope and the reformation of iron-rich crusts. Proceedings of the National Academy of Sciences.
117(31): 18347–18354. https://doi.org/10.1073/pnas.2001740117.
Lewis, A. 2017. Precipitation of heavy metals. pp. 101–120. In: E. R. Rene, E. Sahinkaya, A. Lewis and P. N. L. Lens
[eds.]. Sustainable Heavy Metal Remediation: Volume 1: Principles and Processes. Springer International
Publishing. https://doi.org/10.1007/978-3-319-58622-9_4.
Liamleam, W. and A. P. Annachhatre. 2007. Electron donors for biological sulfate reduction. Biotechnol. Adv. 25(5):
452–463. https://doi.org/10.1016/j.biotechadv.2007.05.002.